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AN APPLICATION OF SCMMERFELD'S COMPLEX ORDER WAVE FUNCTIONS
TO ANTENNA THEORY

Absiract

In the past wave functions of integral order have been used
quite advantageousiy in the solution of certain antenns and boundary-value
prcblems. However, in some instances these wave functions are complately
alien to the problem and introduce difficulties which, indeed, can be re-
gsolved but only at the expense of loglical simplicity. To place in evidence
the usefulness and "naturslness™ of complex order wave functions for the
solution of certain problems, we examine theoretically the input admittance

of a bogs antenna with the aid of these functions,

Introduction

Suppose we desire to construct a solution to the wave equation

(v2+ k) u=o 1)
where u must satisfy the Sommerfeld radiation condition and must assume
prescribed values on the surface of a sphere of radius a. Using spherical
coordinates r, O, # with origin at center of sphere, assuming that u is
independent of the azimuthal angle ¢, and requiring that on the surface of
sphere

cu*ﬁga;-u-f(O) (2)

where a and B are constants, we consider a solution to (1) of the form

00
uilr, 2= S ;A P (coz Q) h ) (1er) (2)
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where Pn(cos 6} 1s the legendre polynormial of integral order n and

hn(l)(kr) is the spherical Hankel function of the same order. The An'a are

constants which have to be determined by requiring that (3) satisfy (2) when



r = a, As it stands, (3) satisfies the radiation condition,

a ~
lim r(—a-x;- u - iku) = O (L)
I — 2
because as r.-..co the spherical Hankel functlons have the behaviour of an
outwardly pruiageting wave,

n+} _ikr
) ey~ o) 8 - (57

To determine the unknuwn constants, the An's,we substitute (3) into (2) and

use the orthogonality property of the Legendre polynomigls,
Tr

- 2
f P _(cos e) Pm(cos 8) sin © d6 bm = (6)
o

vhere § = 0,1 when n ' m, n =m respectively. Thus

om ;ff(o) P,(cos ©) sin & d@
2 i’a h (1)(ka) B hm(l)(ka)] (7

e

Substituting (7) into (3) we have the desired solution. It is clear that
the crux of this problem is the orthogonality of the Legendre puiynomials.
If this orthogonality did not exist, it would be impossible to determine
the A 's. However, for certzin problems it would be much more ccnvedieant
and "natural” if the radial functions, instead of the cngular functions,
were orthogonale This is irve, for example, if the wave function has to
satisfy on a conical surface boundary conditions which depend on r. 1In

the boss antenna problem the wave fuaction rmust satisfy just such boundary
conditions,.

In this ncte we first develop somc properties of the complex
order wave functions. We find that u can be represented in the form of an
infinite series, each term of which is the product of an angular function

and a radial function. The angular and radiai functions prove to be the



Iegendre functions and the spherical Hankel functions of complex order
respectively., And now it is the spherical Hankel functicnc of complex
order that are orthogonal. Then we apply these wave furnctions to the

calculatien of the input impedance of a boss antenna.

Complex COrder Wave Functions

let us consider in spherical coordinates r, 9, @, a T™
field; E=r E + 8 Eg, He d H¢ where r, 8, @, are the unit vectors
and Er, Eg, E%, are the non-vanishing components of the electromagnetic

field. For steady-state, i.c., time dependence exp(-iwt), the complex

vectcrs E and H satisfy the Maxwell equations,

VxE = iwpH (8)

VxH = iwE (9)
from which it follows that

VxVxH=k?H (10)
where k% = a)agu and 6, ¢4 denote the dielectric constant and permea-
bility of free space. If we assume that E and H are independent of the

azimuthal angle @, then in spherical coordinates (10) takes the form

a—a:-g(r}% 0-}7%:—5—19 —g-g-(Hg,ainO)] #ker¢-o -
If we set
Hy = 1ak & u (12)
then (11) can be written as
iwé g—e- [(ﬁ + k2) u(r, G)] = 0 - 13)

Ve choose u(r,9) such thst

(@ + k%) u(r,0) = 0 (1k)
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for all permissible values of r ond © . Then according to (9) and (12)

the electromagnetic field is given by the following expressions:

Be = < F3lns 56 (4 0 W (:5)
E -l -a— i(ru) (16)
® r @ dr

Hy - msgb- u 1)

Now we examine the solution of the wave equation (14) that satisfies the

radiation condition (4) and the boundary condition,
g-r- (ru) =0 wim r=a (18)

In view of (1€) it is seen tha! the condition (18) is equivalent to require-
ing that E9 vanish over surface of sphere of racius a.
Writing v{r,@) explicitly in separated form, » = R(r) P(cos 6)

{14) ylelds two ordinary differential equations

dR
% %; (rl ) ¢ KX e = ¢ (20)

where C 1is the separation constant, If we choose C -L/(l/+ 1) where )y
is unrestricted (a complex number); the solution of (19) is the legendre
function Pv (cos 8). This function is identical to the hypergeometric

function, i.e,,

ﬂ) (cos 8) = F(=V, V+1,1, 1l - ;os e ) s

and is finite for all © except © = nm , The corresponding solution of

- (1)

(20) is the apherical Hankel functicn of the first kind hy (kr) and it

is related to the cylindricecl Hankel function of the first kind K ;izuk(kr)



according to the relatiorn,
( 1) (1)
k
(kr) \/ Hy, 1/2( r) | (22)
Herice, we can write the solution of (1lL) as
u(r,s) a}_'Ayh (1)(kr) P (cos 9) (23)
—

where the sunmation is over all values of ) determined by the boundary ccn-

dition (18). Substituting (23) into (18) we obtain

Z Aya Ty (2 h}, )(ka)) (cos 8) =0 (2k)
To satisfy (2L) the V's are chosen so that
[_a_a; ( (1)(kr))-| =0 (25)
rea

vie denote these V's as Vl’ )/;?, Vj, etc,

The radial functions h (1)(x) are orthogonal over the range
1 4

x = ka to x =@, To show this we recall from (20) that for any V , say,

Va
2 3
xSz Gyl v ) e - o (25)
and for any other value of y, say, ym
2
e 52 lnfV) (e n 0, o @ s o e
n

Multiplying (26) by h,’_l) and (27) by hy(_l) and then integrating the

difference from x = ka to x =00, we obtain



oo -6-
\| §~h.,(l)(x) % s

{
o (¥ +1) -p (v )] ) ( Ay a -

e

o0

\ 4° 2 A
3 [ e I(;1.'(,() gxi % hyél)(x)) - % h‘;m(l) (x) 9&2 (x hu,,(l)(x))]cbt s
ka

o0
. d ’ S .
[x hy V) & (x by D) = x by M) & (x by Pix) lk (28)
<ka

where the last equaljiy results from an integration by parts. The integrated
term disappears at x = ka and x =00 by virtus of (25) and the asymptotic

bhehaviour of h),(l)(z). Thus
co i
§ tyn @ hy 0060w o, Ny, ) L@
ka

N,ﬁ’(ka) is 8 normalization factor which can bc cbtained from {28) by an ap-

plication of 1'Hospital's rule for the limit

s~

""4n’ and, of course, bnm
is the well-known Kronecker delta.
Hence, the colution of (1h) which satisfies the boundary condition

(18) and the Sommerfeld radiation condition is given by a sum over all Yrgy

u(r,d) -ZAV hy(l)(kr) Py (cos Q) = (30)

where the A),'s are as yet undetermined constants. Once we are given
u(r,go) on any cenical surface 9 = 90, the A‘,'s are determinable by
virtue of the orthojcnality condition (29). Contrasting (3) and (30) we
see that (3) is appropriate for boundary conditions on a sphere, whereas
(30) is appropriate for cenes.

Substituting (30) into (15), (16), and (17) we find the electro-

magnetic field in terms of the complax order wave functicns, h‘}l)(kr) Q}(cos Yy



H¢(r,9) = in.ZAyhy(l)(kr) -Sg Py (cos 8) (31)
Eg(r,3) = %ZAV%: (r hy(l)(kr)) '2'5 Py (cos 9), (32)

and since P, (cos @) satisfies (19) when C =X (4/+ 1),

Er(r,O) = %ZAV V(V+ 1) h},(l)(kr) Py (cos @) (33)

An Aoplication to Antenna Theory

To place in evidence the usefulness of these complex order wave
functions, we shall use them to compute the admittance of a boss antenra., A
boss antenna consists of a coaxial line fitted with an iafinite ilange and &
hemispherical boss at the end of the inner conductor (fig. 1). Except for
the addition of a hemispherical boss, it is identical to the circular dif-
fraction antenna.(z)

We assume the antenna is excited by a singie propagating mode
{the principal mode) in the coaxial region. This mode has no azimuthal
variation, The non-vanishing components of the field in the coaxial region,
20, a€p=b, are H¢,. Ep, Ez and in the antenna region, r=a, 95%, the
non-vanishing components arve H¢, E., Eq. Cylindrical coordinates are used
in the coaxial region and spherical coordinates in the antenna region,

In the antenna repion, according to (33), the r-component of

the electriec field is given by

( 2
E (r,8) = %ZA" Yy l)hV‘l)(kr) Py, (cos 8), r>a, Qé_% + (33a)
If we denote Er(r,g-) by g(r), (33a) hecomes
0 = %ZAP YWY+ 1) hy(l)(_kr) Py (0), r>b, @ -% (3La)

E(r) = %ny v+ 1y nf P ke) py(0),  areo, o -2 (3hb)

”
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since the component of the electric field itangeni to the periectiy conduct-

and integrating from k- = ka to kr = oo, we obtain by virtue of the ortho-

gonality relation (29),
%o

fr&(r) hy (kr) d(kr)
Ay = ka (35)
Y(Y+1) Py (0) Nv(ka)

Substituting (35) into {31), we see that the magnetic field st any point in

the antenna region is given by

00 3
(+) ) J’ ' nd(kr) hy(kr') 3o P, (cos Q)
H¢ (r,9) =1wf J r'ﬁ(r-) d(kr?') E TOTES Py(o) Ny(ka)
(36)

According to eq. (2.3L) of reference 2, the magnetic field in the

coaxigl region aqp<b, 250 is given by

- I ¥ (o ,//\ 2 _o2
H¢( )(pnz) = %—fl—‘z;l + 1@8£$(pl) p'dp'zﬁp) Rn\F_’ ) . nc k¢ 2

S rr

37
where I(z) is the ccaxial line current and 6(9) is the p-component of the
electric field across the aperture. 'E(p) and E(r) of (3lb) are identical
since in the plane of the baffle the r-cocrdinate of the spherical coordi-
nate system and the p-coordinate of the cylindrical coordinate system are

identical. The eigenvalues ln and the eigenfunctions R (p) are defined
n

by
2
) 1 3 1
G2 *s Bt M R o0 (28)
3 .1
(a_5 + E) R(P) =0 at p=apb (39)

and the An's are roots of the transcendesntal equation



- b )
Jo (A a) N (A;h) N (R 8} J (A D) (Lo}

The crthogenalily relations,

b
Jfﬁn{p) Rm(p) pdp =5 (11)
a
b

R(p) dp =0 (L2)
a

immediately follow from (38) and (39).
Since H¢ must be continucus across the aperture, we have

H¢(+)(r,%) = H¢(-)(p,0) for a<p<b., Thus from (36) and (37)

b
| R (0) R (o)
%%9% + 1@8{ g(p') p! dp'z_'r‘=z_n5__——— -

| AN k<
0 J
. ‘hy (kr) h,, (kr') 35 5, (0)
1€k fr'E(r ) dr' /| VW D) B(0) b ke) (L3)
ka

Tkis is an integral equation. Y%e shall not attempt to solve it. Rather,
we shall use it to fcermulate a variational principle for the antenna ade

mittance,

From (2.,26) and(2.27) of reference 2 the coaxial line current

and voltage are given by

1(z) = 2n (o o Ko o lS‘__)ikz) (Lk)

b
V(z) -'j Ep(-)(p,z) dp -;/SE la elks _ Beikz) log E (Ls)
a

where a and B are constants,

The characteristic admittance of the line is g-iveh by



Y ¥ .'—2‘" '—-_
° Js-10g(3) (46)
JE e
Kow let us derive %he variational principle for the admittance
Y(O) where
. & 0)
oL (o (L7}

We do this by multiplying (L3) by pE(p) and integrating from p = 5 to

p = b, and finally dividing the resultant equation oy

[S Eio) dp]2 - [vm]"’

Thus
y 2
fpg(p) Ry (p) dp)
-2-17 Y(0) + biw £ A _
e Yoz - &
a
b
(jp!dpl g(P')h‘;{l) (kp'))z .
Bi.ﬂﬁ. a_ n ?G P (O) (L‘e)
[fg(p)dp] V(V+1) N (ka) P, (0)
a o

It can be eezsily shown that Y(0) is stat} ~nary with respect in small varia-
tions of g(p) about the true g(p) determined by the integral equation (L3).
We choose % a5 a trial function. That is, we let E(p) - %

in (4B)s Due to the orthogonality relation (L42), (LB) becomes

b
3
2 1m£k'_?(5hy(1)(kp) dp)2 % Py(0)

sa

- o )
1(0) [log %]22-1 V(V+ 1) Ny(ka) Pl’ s




] ]
s an accurate expression for the admittance of the antenna. It is
somtimes more useful to consider the ratio Y(O)/YO, which is a dimension-

less quantity,
kb

(1) 3 YF
¥(0) L (k£ hy " (kp) d (l‘")> 1 =2 Py, (0)
Y 00 5 = 20
o log (Z) S[hy(l)(kp)]2 dlio) J(V+ 1) };/(0)
Ka

1em\

\oY)

This is only a fcrmal solution, however. Since the values of the functions
involved have not been tabulated, only certain limiting values(B) can be at

present obtained for (50).
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Figure 1. BOSS ANTENNA CONSISTING OF COAXIAL LINE
FITTED WITH FLANGE AND HEMISPHERICAL BOSS
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